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A model for particle cavitation in 
rubber-toughened plastics 
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An energy-balance criterion for cavitation of rubber particles, which was proposed in an 
earlier paper [A. Lazzeri and C. B. Bucknall, J. Mater. Sci. 28 (1993) 6799], is developed by 
including a term for the energy stored in the matrix and released during expansion of the voids. 
The model relates the critical volume strain at cavitation to the radius of the rubber particle, and to 
the shear modulus, surface energy and failure strain of the rubber. The effects of temperature, 
strain rate and type of stress field upon cavitation behaviour and the resulting toughness of the 
two-phase polymer are discussed in terms of the model. 

1. Introduction 
Cavitation of the rubber particles has been observed 
in toughened polymers over many years. Electron 
microscope evidence of cavitation has been found in 
both thermoplastics and thermosets, including 
toughened grades of nylon [1-7], polystyrene [8,9], 
polycarbonate [10,11], PVC [12,13], epoxy [14-18] 
and urethane-methacrylate resin [19]. Both SEM and 
TEM have proved useful in studying the phenom- 
enon. However, some commentators continue to ques- 
tion whether particle cavitation makes a significant 
contribution-to the toughening mechanism and there 
is considerable debate about the conditions under 
which void formation occurs. 

Several authors [8, 20, 21] have concluded that rub- 
ber particle size is one of the main factors controlling 
cavitation: tests on blends containing rubber particles 
with a range of sizes have shown that voids form 
preferentially in the larger particles. Recent work by 
Sue and Garcia-Meitin [22] on rubber toughened 
epoxies suggests that voids are more likely to form 
within rubber particles when the stress conditions are 
highly triaxial, as they are near crack tips, and that 
cavitation will not take place before a certain volume 
strain is reached. Similar results have been reported 
for other matrix-rubber systems, including PC/MBS 
[10l, PC/PE [11], nylon-6,6/olefin rubber [3] and 
PVC/CPE [13]. From the mean stress and bulk 
modulus, Tse et al. [13] also calculated a critical 
volume strain for stress whitening, which was indepen- 
dent of composition and temperature; however, they 
gave no information about rubber particle size. 

Lazzeri and Bucknall [20] have recently developed 
a new treatment of rubber particle cavitation based on 
an energy-balance approach. An outline of their 
model is given below. The underlying principle is that 
the particle will cavitate when the energy released 
during cavitation is greater than the energy needed to 
form the void. In the original analysis, only energy 
stored within the particle itself was taken into account 

and no allowance was made for work done by the 
matrix as the void expanded. This paper considers the 
effect of introducing additional terms for the energy 
input from the matrix and surroundings and examines 
the relationship between cavitation resistance and the 
properties of the rubber, as predicted by the model. 

2. Theory 
The two basic assumptions of the model are that the 
largest defects within a typical rubber particle are 
microvoids with dimensions in the order of 
a nanometre, and that these microvoids will expand 
only if the resulting release of stored strain energy 
is sufficient both to increase the surface area of the 
void and to stretch the surrounding layers of rubber 
biaxially. For convenience of calculation, the rubber- 
toughened polymer is treated as an assembly of com- 
posite spherical elements, consisting of a rubber 
particle of radius R surrounded by a concentric shell 
of the matrix polymer, with an external radius Q, as 
illustrated in Fig. 1. The volume fraction of rubber, qb, 
is therefore R3/Q 3. The two phases are assumed to be 
homogeneous, isotropic and well bonded to each 
other. Their elastic properties are defined by shear 
moduti G m and Gr and bulk moduli Km and Kr, where 
subscripts m and r refer to matrix and rubber, respec- 
tively. 

Rubbers have very low shear moduli but high bulk 
moduli: typical values are G~ =0.4 and Kr = 
2000 MPa. Therefore, under uniaxial or biaxial ten- 
sion, they can reach extension ratios in excess of 5 at 
relatively low stresses, which are capable of producing 
only small volume strains, ca. 0.5%. By contrast, the 
rubber particles in a toughened plastic are constrained 
by the surrounding rigid matrix, so they can easily be 
subjected to substantial triaxial tensile stresses. If the 
rubber is well bonded to the matrix, volume strains of 
1% can be generated within the rubber particles at 
low overall strains (ca. 5%) in the toughened polymer. 
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Figure 1 Composite spherical element used in the model: (a) before and (b) after cavitation, showing normal stresses acting on inner and outer 
surfaces of matrix shell. Radii chosen to give AV R = 1.4% and ~ = 0.185. 

Because of the weak van der Waals attractions be- 
tween neighbouring chains in an organic polymer, 
these dilatational strains may be sufficient to produce 
cohesive failure in the rubber, subsequent expansion 
of a void nucleus being aided by the mobility of the 
rubber molecules. The conditions under which cavita- 
tion'occurs are explored in this paper. 

As small applied shear strains are unlikely to affect 
void formation in the rubber, the analysis concen- 
trates purely upon the response of a toughened poly- 
mer to imposed volume strains. Calculations are 
therefore based upon the elastic behaviour of a spheri- 
cal shell under uniformly distributed internal and ex- 
ternal tensile stresses PR and P~ acting normally to the 
surfaces, as illustrated in Fig. lb. This is a standard 
problem in mechanics, which is addressed, for 
example, by Reismann and Pawlik [23]. The radial 
displacement x(q) within the matrix at a distance 
q from the centre of the sphere is given by: 

(PR -- PQ)R3Q 3 x(q) = (paR3 - PeQa)q + (1) 
3Km(R a _ Q3) 4Gm(R 3 _ Q3)q2 

Before cavitation, shear stresses within the rubber 
particle are zero and the only stress acting on the 
rubber is a mean stress, which is also the stress PR 
acting normally at the particle-matrix interface. This 
generates a volume strain AVr in the rubber: 

PR = K, AV~ = K~( 4~R2OR'] 3Krx(R) 
V, f - R (2) 

where Vr is the volume of the rubber particle. 

2.1. Energy  of cav i t a t ed  rubbe r  par t ic le  
For convenience of calculation, the void is assumed to 
be a sphere of radius r formed at the centre of the 
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rubber particle. Immediately before cavitation (r = 0) 
the strain energy U,(0) of the particle is given by: 

Ur(0) = ~nR3W*(0)  = 2nR3Kr[AVr(O)]2(3) 

where W* (0) and AVr(0) are the stored energy density 
and volume strain within the rubber phase immediate- 
ly before cavitation respectively. Usually, both the 
radius R and volume strain AVR of the rubber particle 
(here taken to include both the rubber phase itself and 
the void) will increase during cavitation. In relation to 
the rubber particle, the volume fraction of the / void 
cavity is r3/R 3, and the resulting volume strain~within 
the cavitated rubber phase is (AVR -- r3/R 3) where in 
general AVR ~ AVr(0). 

The formation of a cavity introduces two additional 
contributions to the energy of the rubber particle: 
a surface energy term 4~r2F, where F is the surface 
energy of the rubber; and the shear strain energy, 

W* d V, required to stretch the rubber and allow the 
cavity to expand. The total energy U,(r) of the 
cavitated particle is then given by: 

Ur(r)=~R3Kr A V R - - ~ )  + 4 r c r 2 F +  W*dV 

(4) 

A typical value of F for a hydrocarbon elastomer is 
0.03 J m -  2 [24}. 

The shear strain energy density term W* can be 
evaluated using standard rubber-like elasticity theory, 
and is given in abbreviated form by [20]: 

U~s(r) = 2~r3G, f(~,f) (5) 

where Xf is the extension ratio of the rubber at failure 
in equi-biaxial tension. Numerical integration shows 
that with AVR = AV,(0) the function F(X,) typically 
increases from 0.7 to 1.3 over the range of ~,f values 



from 2 to 6. Reported values of )~f for vulcanized 
natural rubber in equi-biaxial tension are between 3.5 
and 4.0 [25]. In the original analysis, F()~f)  includes 
the irreversible work done in stretching material in the 
centre of the particle beyond Xf, to give a broken 
membrane around the cavity. This irreversible work 
term is relatively small when the radial strain x (R)/R 
at the particle-matrix interface is small. 

With the inclusion of terms representing the work 
done in stretching the rubber membrane around the 
growing void, the final expression for the energy of 
a cavitated particle becomes: 

2 3 ( r3'] 2 
Ur(r ) = ~rtR K ~ . A V R - R 3  / + 4 r t r 2 F  

+ 2rtr a GrF(Xf) (6) 

or, dividing by the volume of the rubber particle, Va: 

U r ( r )  r A V  R + ~  + R 3 
VR R 3 f  ~ 2 

(7) 

Equation 7 relates the energy density of the particle 
directly to the normalized radius r/R, emphasizing the 
point that only the term in F is affected by the abso- 
lute size of the particle: the surface work term becomes 
more important as the particle size is reduced. 

As noted earlier, the mean stress (negative pressure) 
acting within the rubber phase is the product of its 
bulk modulus and its volume strain. After cavitation, 
this is given by Kr(AV g - r3/R3). The area over which 
this stress acts is g (R  2 -  r2). In addition, there are 
surface forces acting over a line of length 27zr, and 
biaxial stretching forces f~s within the rubber mem- 
branes surrounding the void. The total force, fr, acting 
on the current cross-section of the rubber particle, 
7zR 2, is given by: 

( r 3 )  
fr =frs  + 2 r c r r  + rc(g 2 -- r2)K, AVR -- ~ (8) 

By applying the equation for equi-biaxial stretching of 
a rubber shell, following the method given in [20], it 
can be shown that fr~ is: 

/" 2.f /X3 __ X - 3 \  
f~s = 2rtG'r2 | [ - -3  - - - ~ |  dX (9) 

The normal stress acting on the particle-matrix 
boundary is then given by: 

PR = Pr  
2rF ( r 2 )  f f~s -I- + K r  1 -  

7zR 2 ~zR 2 -R-T ~5 

//R 3 -- R 3 r 3 ) 

• \ ~o 3 ~o 3 (10) 

where Ro is the radius of the unstressed particle. 
Under the conditions relevant to particle cavitation, 
where void sizes and overall strains are small, the two 
leading terms are also small, and the stress Pa is 
determined largely by the term in Kr. 

2.2. Energy of Matrix Shell 
Equation 1 may be simplified by substituting the rub- 
ber volume fraction qb for R3/Q 3, to give: 

x(q) PQ -- ~PR (PQ -- PR) R3 
q -- 3Km(1 -- qb) + 4Gm(1 - qb)q 3 (11) 

The volume strain AV o in the complete particle-shell 
element is then obtained by setting q = Q: 

3x(g) Po - qbPa 3(PQ - PR)dO 
AVQ - - + (12) 

Q K=(1 -- s 4Gm(1 - q~) 

Similarly, the volume strain A V R in the particle can be 
related to the stresses acting on the matrix shell by 
setting q = R in Equation 11: 

3x(R) PQ - 4)PR 3(PQ - PR) 
AVR = R - Kin(1 - qb) + 4Gin(1 - ~) (13) 

As noted earlier, A VR is the volume strain in the 
rubber particle, which includes everything within 
a sphere of radius R. Before cavitation, this is equal to 
A V,, the volume strain in the rubber phase. However, 
after cavitation AVa = AVr + r3/R 3. 

It is important to note that an apparently large void 
may represent only a very small volume fraction of the 
particle or composite element, and that within the 
elastic strain region under discussion the overall effect 
of cavitation on the radii Q and R is extremely small. 
Fig. 1 is drawn with r = 0.24R and R/Q = 0.57, 
which corresponds to a particle volume strain 
ra/R 3 = 1.4% and a particle volume fraction 
qb = 0.185. With these dimensions, an increase of 
less than 0.1% in Q would be more than enough to 
compensate for the volume occupied by the void. 

3. Predic t ions  of  the  mode l  
The foregoing set of equations provides a basis for 
calculating the energy of the composite element as 
a function of void size r under a range of loading 
conditions. Three standard conditions are discussed 
below: fixed volume strain in the particle, fixed volume 
strain in the combined element and fixed applied 
stress Pq. 

3.1. Volume strain of rubber particle constant 
The behaviour of the rubber particle during cavitation 
is most easily understood by holding the volume 
strain A VR constant so that no further work is done by 
the matrix and all energy changes take place within the 
particle. This condition is unlikely to arise in practice, 
but it simplifies the calculations by relating the energy 
of the rubber particle, Ur(r), directly to the void radius 
r through Equations 6 and 7, and thus provides 
a straightforward basis for discussing the effects of 
each parameter in the equation upon void formation. 

The predictions of the model are illustrated below 
in a series of examples, in which A VR, R, Gr and F are 
each varied in turn. The bulk modulus of rubbers is 
relatively insensitive to chain structure and testing 
conditions and is therefore treated as a constant: the 
chosen value of Kr = 2000 MPa is for poly- 
butadiene [26]; the function F(Xf) is taken as 1.0 
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Figure 2 Normalized energy of rubber particle as a function of void 
radius, for a series of volume strains AVR in the rubber particle. 
Calculated using Equation 6 with R = 0.1 gm, Gr=  0.4MPa,  
Kr = 2 GPa, F = 0.03 J m  -2, F(Xf) = 1. Fixed AV R during cavita- 
tion. 

throughout. Other quantities used in the calculations 
are listed in the figure captions. 

Fig. 2 shows the relationship between the nor- 
malized energy Ur(r)/U,(O) and void radius r for 
a fixed particle radius of 0.1 #m at a series of fixed 
volume strains A VR. For  the higher volume strains, 
energy falls rapidly with void size, reaching a min- 
imum which corresponds approximately to 
(r/R) 3 = AVR, so that AVr, the volumetric strain 
energy stored in the rubber phase, decreases (approx- 
imately) to zero. Beyond the minimum, the energy 
rises again, essentially because at fixed A VR a further 
increase in void size can be achieved only by com- 
pressing the rubber against the surrounding matrix. 
This situation could, in principle, arise if the stored 
energy were released suddenly, so that the material 
surrounding the growing void acquired enough kin- 
etic energy to go through a number of damped radial 
oscillations before reaching equilibrium. 

The important point to note from Fig. 2 is that the 
energy minimum becomes more shallow as the ap- 
plied volume strain A VR is reduced, until eventually it 
is impossible to form a void without increasing the 
energy of the particle above that of the void-free state. 
This provides a convenient criterion for cavitation: the 
particle must be able to reach a lower energy on 
forming a void. 

The critical volume strain for cavitation is a func- 
tion of particle size R. Fig. 3 shows the relationship 
between U~(r)/Ur(O) and r/R for a series of fixed par- 
ticle sizes, all at a fixed AVR of 0.4%. As R decreases 
the surface energy term becomes increasingly impor- 
tant, with the result that the energy minimum becomes 
shallower and moves to lower r/R. In other words, 
equilibrium is reached well before the stored strain 
energy can fall to zero. Eventually, a critical particle 
size is reached, below which cavitation cannot occur 
at the specified volume strain. To calculate the critical 
conditions for void formation, 0 U,/Or was obtained 
from Equation 7 and set equal to zero. The nor- 
malized energy U~(r)/U,(O) was then set equal to 1.0 
and the two resulting equations were solved for r/R 
and R. The analysis shows that there is an inverse 

Figure 3 Normalized energy of rubber particle calculated using 
Equation 7 for a series of particle sizes, AVR = 0.4% Other condi- 
tions as Fig. 2. 
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Figure 4 Critical particle radius at cavitation for rubbers with vari- 
ous shear moduli G r. Calculated using Equation 6. Other conditions 
as Fig. 2. 
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Figure 5 Data from Fig. 4 replotted as R-1 versus volume strain. 

relationship between critical particle radius and vol- 
ume strain at cavitation, as illustrated in Figs 4 and 5. 
The plot of R-1 versus A VR is particularly helpful in 
identifying critical combinations of particle size and 
volume strain, 

The relationship is strongly dependent upon Gr, the 
shear modulus of the rubber phase. Unlike K ,  G, is 
subject to very wide variations with time, temperature 
and degree of cross-linking, Typically, Gr increases by 
more than three orders of magnitude as the rubber is 
cooled through its glass transition. Above Tg, similar 
changes occur with increasing strain rate. The shear 
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energy F of rubber, Other conditions as Fig. 2. 

moduli of elastomers are also raised substantially by 
chemical cross-linking or by partial crystallization. 
Figs 4 and 5 show that much smaller changes in 
Gr than those occurring at Tg have a dramatic effect on 
cavitation behaviour: increased resistance to stretch- 
ing of the rubber membranes surrounding the void 
nucleus can result in the complete suppression of hole 
formation. 

The failure behaviour of the rubber, represented by 
F()~f), is also subject to wide variations. In the fore- 
going discussion F(Xf) was assigned a typical value of 
1.0 [20] and Gr was varied. However, since Gr and 
F()~f) appear only as products throughout the ana- 
lysis, this procedure has exactly the same effect as 
fixing G~ and varying F(Xy): the results given in Figs 
4 and 5 therefore apply to stated values of Gr F(~.f) 
and not simply of G,. 

Fig. 6 shows the effect of varying surface energy F. 
The curve for F = 0.03 J m-2 corresponds to that 
for G, = 0.4 MPa in Fig. 5. van der Waals surface 
energies of hydrocarbon rubbers are not intrinsically 
subject to wide variations, but it can be argued that 
F should include an additional contribution due to 
breaking of chemical bonds during cavitation. This 
approach was adopted by Kramer [27] in his analysis 
of crazing in glassy polymers: bond rupture was estim- 
ated to increase F from 0.040 to 0.087 J m-2 in poly- 
styrene, which is uncross-linked. In rubbers with high 

degrees of cross-linking, bond rupture could raise 
F substantially. Fig. 7 shows the proportionality be- 
tween critical particle radius and F predicted by the 
model, further emphasizing the importance of surface 
energy in controlling cavitation. 

3.2. Volume strain of rubber particle variable 
The results given above reflect the general way in 
which cavitation is affected by the properties of the 
rubber particle and illustrate the main features of the 
model. However, they tend to overestimate critical 
particle sizes and volume strains because they make 
no allowance for the energy input from the matrix as 
the void forms and the stresses at the particle-matrix 
interface relax. The amount of energy available de- 
pends upon the precise loading conditions. 

Stresses and strains in the combined particle-shell 
element in its initial state, before cavitation, may be 
obtained from Equations 2, 12, and 13. From Equa- 
tions 2 and 13: 

P~ PQ -- ~bP~ 3(P e - PR) 
- + ( 1 4 )  

K, Km(t -- qb) 4Gm(1 -- (~) 

which on rearranging gives: 

r Kr(4Gm+3Km) ] 
PR = Pe LgGm(Kr_K~ ~ ~ K----~-Gm 4- 3Kr) 

= Pe~ (15) 

The term ~ becomes zero when the rubber particle is 
replaced with a void, which is equivalent to setting 
K r =- 0. Substitution for PR in Equation 12 gives the 
following expression for Ke, the bulk modulus of the 
(non-cavitated) combined particle-matrix element: 

dP e _ 4GmKm(1 - qb) (16) 
K~ - d(A Vo) 4(1 - ~qb)Gm + 3Kmdp(1 - ~) 

Then: 

Ue(0) _ P~ _ Ke(AVe) 2 (17) 
V e 2Ke 2 

where V e is the volume of the element. 
In order to calculate energy changes in the com- 

bined element during cavitation it is necessary to define 
boundary conditions. A relationship can then be ob- 
tained between the radial displacement of the par- 
ticle-matrix boundary, x(R), and void radius r. This 
must be consistent with the condition that the forces 
acting across the particle-matrix boundary are in 
equilibrium, i.e. that the same value of P~ satisfies 
Equations 10, 12 and 13. The total energy of the 
combined element can then be determined as a func- 
tion of r. 

The results given below are based on two standard 
boundary conditions: a fixed volume strain AV e and 
a fixed applied stress Pc- If PQ is fixed then substitu- 
tion into Equation 13 enables PR to be calculated for 
a series of chosen radial strains x(R). If AV e is fixed 
then Equations 12 and 13 together provide a pair of 
simultaneous equations in PQ and PR for each value of 
x(R). In either case, the relationship between PR and 
x(R) (and hence AVn) is obtained. The results can 
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then be applied to Equation 10 to find corresponding 
values of r. The equations thus yield a set of stresses 
and strains at radial distances r, R and Q, from which 
the energies of both cavitated rubber particle and 
matrix shell can be calculated. 

Once the volume strain of either the rubber particle 
or the combined element is fixed the system becomes 
isolated from the surroundings and all further energy 
changes are internal. As shown in Figs 2 and 3, when 
the volume strain in the particle is held constant 
during cavitation, it is convenient to express results 
obtained using the model in terms of the normalized 
energy Ur(r)/Ur(O). Similarly, when the volume strain 
AVQ is held constant the energy of the combined ele- 
ment can be normalized as Uo(r)/Ue(O), where Uo is 
the sum of energies in particle and matrix. However, 
when PQ is held constant work is done by the sur- 
roundings during cavitation of the rubber and the 
system is no longer a closed one. Under these condi- 
tions the choice of an initial energy that can be used to 
normalize the data is less obvious. 

In the present study the problem has been resolved 
by defining a maximum potential energy, Up(0), which 
is reached by the surroundings immediately before 
cavitation, and is therefore a function of the initial 
volume strain in the rubber at cavitation, AVR(0). The 
energy Up(0) is taken as 4~Q2peAxQ(max), where 
Axe(max) is the maximum possible radial deflection of 
the shell's outer surface on reducing the stress at the 
particle-matrix boundary from PR(O) to zero. In gen- 
eral, PR does not vanish when the rubber cavitates but 
remains positive in accordance with Equation 10. The 
total energy of the system at a given void radius r, for 
the case that Pe is held constant, is then given in 
normalized form by: 

UT(r) _ Ur(r ) 4- Um(r ) 4- Up(r) (18) 

UT(0 ) Vr(0 ) 4- Urn(0 ) 4- Up(0) 

Fig. 8 compares curves of normalized energy 
UT(r)/UT(O) against reduced void size r /R  for the three 
loading conditions: fixed AVR, fixed AV e, and fixed PQ. 
The three sets of curves are similar in shape but as 
expected show progressively smaller critical volume 
strains AVr(0) at cavitation as the amount of energy 
supplied to the particle by the matrix and surround- 
ings increases. This point is further emphasized in 
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Figure 9 Plots of critical particle size R versus initial volume strain 
in rubber particle A V~(0) calculated for: (a) fixed A VR; (b) fixed A VQ; 
(c) fixed PQ during cavitation. 

Fig. 9, which compares curves of critical particle size 
against initial volume strain in the rubber particle 
under the three different loading conditions. 

4. Discussion 
The model outlined in a previous paper, and de- 
veloped in the present study, provides, for the first 
time, a quantitative basis for discussion of cavitation 
in rubber-toughened plastics. It thus offers the possib- 
ility of resolving a number of problems that have 
arisen in interpreting the fracture behaviour of these 
materials. By emphasizing the way in which volume 
strain, particle size and material properties interact in 
determining whether the rubber will cavitate, the 
model identifies key features of the toughening mech- 
anism. 

Cavitation in itself cannot be regarded as an impor- 
tant energy-absorbing process. Indeed, it has been 
shown that it can result from comparatively small 
energy interchanges taking place within the rubber 
particles. Furthermore, it does not immediately pro- 
duce a major increase in volume: most of the calcu- 
lations in this paper are based on the assumption that 
the volume strain of either the rubber particle or the 
particle-matrix combination is constant; even when 
the matrix shell is allowed to expand by a volume 
equal to that of a typical stable void the overall effect 
on volume strain is only ca. 0.2%. The real importance 
of cavitation is that it reduces the resistance of the 
polymer to volumetric expansion in response to 
dilatational applied stress fields which occur, espe- 
cially, at crack tips. This aspect of cavitation is dis- 
cussed elsewhere [20]. Under appropriate conditions 
it may also provide free surfaces for craze initiation. 

If the matrix polymer has a low yield stress, large- 
scale plastic deformation may take place before the 
volume strain is high enough to cause cavitation of the 
rubber particles. On the other hand, if the yield stress 
is very high, fracture will probably intervene before 
the benefits of cavitation are seen in the form of an 
enlarged plastic zone. It follows that cavitation should 
be most effective when the material is near 
a brittle-ductile transition, so that it can have the 
effect of shifting the transition to lower temperatures, 
higher strain rates or larger specimen thicknesses. 
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Particle size is clearly critical under some condi- 
tions. The model shows that very small particles, with 
diameters below ca. 0.1 ~tm, are likely to be effective 
only in situations where the polymer can reach high 
stresses without either yielding or breaking. In this 
context, the work of Gaymans et al. [28] on the Izod 
impact strength of toughened nylon 6 is particularly 
interesting. They showed that the brittle-tough 
transition temperature TBT shifted downwards on re- 
ducing particle diameter over the range 1.6-O.2 ~tm, an 
effect that appears to be related to inter-particle spac- 
ing. Within this range the upper level of impact 
strength achieved above TBT is independent of particle 
diameter. However, if particle sizes are reduced fur- 
ther, the trend is reversed: TBT moves upwards and the 
maximum impact strength observed falls linearly with 
increasing diameter. These results are consistent with 
a critical particle size at cavitation in toughened ny- 
lon, as required by the model. Another paper from the 
same research group [29] shows an upward shift in 
TBT with increasing modulus of the rubber particles, 
again as required by the model. Further evidence in 
support of the model has been obtained in experi- 
ments on toughened urethane-methacrylate resins 
[19], which will be the subject of a separate paper. 
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